碱老化对丝织物结构及稳定同位素比值的影响
摘要
稳定同位素技术因具有示踪指示、快速检测及结果准确等优点被应用于纺织品溯源。为了还原能追溯到产地的古代丝织品的同位素特征,研究老化过程中丝织品同位素的变化情况至关重要。本文通过对丝织品进行碱老化,观测丝织品中丝纤维的形貌结构变化和轻稳定同位素比值变化。结果显示,碱老化会使得丝织品中丝纤维的排列变得松散,表面变得粗糙并伴随有断裂现象,同时结晶度降低。这些现象伴随着丝织品稳定同位素的变化,发现老化丝织品中的氢、碳和氮的重同位素趋向富集,而氧稳定同位素的变化及规律性相对不明显。
作者: 何宇杰1a, 彭志勤1b, 贾丽玲2, 夏润涛1a, 周 旸2, 焦金鹏1a, 黄 驹1a
作者简介: 何宇杰(1996-),男,硕士研究生,研究方向为文物保护材料的研究。
( 1.浙江理工大学 a.材料科学与工程学院; b.纺织纤维材料与加工技术国家地方联合工程实验室,杭州 ;2.中国丝绸博物馆,杭州 )
中国有着悠久的丝织品文化历史[1]。贯穿亚欧大陆的丝绸之路成为了东西方交流政治、经济、艺术和文化的桥梁,而丝织品则是ZJ代表性的商品之一[2-3]。在丝绸之路上出土的丝织品年代久远、产地丰富、数量繁多。蚕丝纤维是丝织品的主要组成成分,这是一种动物蛋白质纤维,极易受到墓葬中各种因素如光照、温湿度、微生物、环境酸碱性等的影响[4-5],从而使得丝织品文物在出土时难以保存完整,大多以碎片、泥化、灰化等微痕迹的形式存在[6]。因此,对于如何鉴别丝织品文物,判断其来源成为了亟待解决的难题。近年来,同位素技术发展迅速,逐渐成为纺织品溯源的主流技术之一[7-9]。
同位素技术已广泛应用于生物学、食品科学、水文地质学等研究领域[10-13],比如大米[14]、肉类[15-16]、海洋产品[17]等产地溯源。近年来,同位素技术已应用于纺织品考古领域。2009年Frei等[18]研究了锶同位素在丹麦铁器时代的纺织品文物中的应用,表明了锶同位素示踪系统作为一种DT的方法可能适用于考古纺织品和其他有机物纤维的起源。2014年Knallar等[19]报道发现陕西法门寺出土的唐代丝织品文物轻稳定同位素有差异,虽然文中不见具体数据分析,但他们认为结合历史资料,可能可以用同位素技术判断丝织品原料来自不同产地。2017年吴曼琳等[20]综述了锶同位素溯源在古代纺织品领域的应用,提出了锶同位素溯源的局限性和不确定性。2018年韩丽华等[21]研究了稳定同位素在蚕茧茧层及丝织品中的差异,发现光、湿老化会对丝织品中稳定同位素比值产生影响。
埋藏环境中的酸碱性条件对于丝织品的存留具有较大的影响,其中,碱性溶液对于丝织品的破坏尤为严重。本文利用一定时间的强碱处理来人工加速老化丝织品,模拟丝织品文物长时间受较为缓和碱性条件影响下可能的状态,研究丝织品在强碱条件下老化至不同程度时的形貌结构状态及轻稳定同位素比值变化情况。通过分析归纳碱老化影响下丝织品同位素的变化规律,可以为丝织品文物溯源时排除老化的影响、进行合理数据校正提供一定的科学依据。
材料与方法
1.1 实验材料和主要仪器设备
34.45 g/m²真丝电力纺(杭州富丝工贸有限公司),分析纯AR无水乙醇(杭州高晶精细化工有限公司),分析纯AR氢氧化钠(天津市永大化学试剂有限公司)。
MAT-253型稳定同位素比质谱仪、Flash 2000HT型元素分析仪(Thermo Scientific,USA),PHOENIX型热表面电离质谱仪(PHOENIX,German),TBS1-8DI基础型实验室纯水机(济南太平玛环保设备有限公司),PHS-25台式精密酸度计(上海雷磁仪器厂)。
1.2 老化样品制备
将丝织品裁剪成15 cm×15 cm的布块,先用无水乙醇和水的混合溶液(体积比1︰1)浸泡清洗,随后用去离子水清洗3次。将布块浸泡在质量分数为5%的NaOH溶液下,置于50 ℃、相对湿度50%的恒温恒湿箱中。每隔1 h取出一次丝织品样品,直至丝织品老化成碎片状,然后在50 ℃的烘箱中低温烘干,放在密封干燥的环境中待测。
1.3 稳定同位素比值的检测
检测前,对所有样品进行预处理。用酒精消毒过的剪子,在布条上裁剪出2 mm×2 mm的小布块。
碳氮稳定同位素比值检测:用镊子夹取裁剪好的小布块,封装在锡杯中,在氦气吹扫流量200 mL/min的条件下,样品被载入960 ℃的燃烧炉中,样品中的碳元素转化为纯净的CO₂,而氮元素会转化为纯净的N₂,再经过恒温50 ℃的气相色谱柱和Conflo Ⅳ型稀释仪,最后通过MAT-253型稳定同位素比质谱仪进行检测。
氢氧稳定同位素比值检测:用镊子夹取裁剪好的小布块,紧密封装在银杯中,放置于Flash 2000HT型元素分析仪样品盘中,样品在1 380 ℃条件下裂解反应形成H₂和CO,经过恒温50 ℃的气相色谱柱分离,随后经过Conflo Ⅳ型稀释仪,最后在MAT-253型稳定同位素比质谱仪进行检测。在分析过程中,每8个样品穿插1个实验室标样进行校正;仪器长期标准偏差为0.02‰。测试过程中的载气为氦气,载气的流速为100 mL/min。碳氮稳定同位素测试的参考气体为CO₂和N₂,氢氧稳定同位素测试的参考气体为H₂和CO。在分析过程中,采用国际标样IAEA-CH7、IAEA-600、IAEA-601和IAEA-310。测试得到的数据按下式进行计算:
(1)
式中:X表示某一元素的重同位素原子丰度;R表示某种元素的重同位素丰度和轻同位素丰度之比,例如²H/¹H、¹⁸O/¹⁶O、¹⁵N/¹⁴N和¹³C/¹²C。²H和18O的国际标准参考V-SMOW,¹³C和¹⁵N的国际标准参考V-PDB。
结果与分析
2.1 形貌变化
图1为碱老化处理4 h的丝织品和未处理对照丝织品样品的SEM图。从图1可以看出,未经过处理的丝织品样品在放大100倍的条件下,能清楚地看到丝纤维整齐而紧密交织在一起;放大2 000倍后,能看到丝纤维的表面十分光滑。经过碱老化处理的丝织品样品在放大100倍的条件下,可以看到丝纤维的排列变得松散;放大2 000倍后,发现丝纤维的表面被碱液腐蚀而变得粗糙,并且伴随有严重的断裂现象。这是由于丝纤维中蛋白质分子中肽链受到碱液水解老化,导致丝纤维出现裂隙,严重时发生断裂。
图1 碱老化处理4h的丝织品和未处理对照丝织品样品的SEM图
Fig.1 SEM images of silk fibers from silk fabrics after 4 h alkaline aging and those from control samples
2.2 红外光谱分析
蚕丝纤维的红外吸收峰目前已经有了较为明确的归属,普遍认为在3 300~3 290 cm⁻¹处有—NH伸缩振动产生的特征吸收谱带;2 978 cm⁻¹和2 930 cm⁻¹附近处分别有—CH₃和—CH₂反对称伸缩振动产生的特征吸收谱带;1 690~1 600 cm⁻¹处有C=O伸缩振动所产生的特征吸收谱带;1 516 cm⁻¹和1 301~1 229 cm⁻¹处有N—H弯曲和C—N伸缩振动所产生的特征吸收谱带及825 cm⁻¹附近处代表C—C伸缩振动所产生的特征吸收谱带[22-23]。
从图2碱老化处理4 h的丝织品和未处理对照丝织品样品的FTIR图谱可以看出,经过碱老化处理后的丝织品与未处理的丝织品的红外图谱有较为明显的不同,代表—NH伸缩振动的吸收峰3 298 cm⁻¹,代表C=O伸缩振动的吸收峰1 639 cm⁻¹,代表N—H弯曲和C—N伸缩振动的吸收峰1 520 cm⁻¹和1 230 cm⁻¹,代表C—C伸缩振动的吸收峰825 cm⁻¹未发生明显的峰位移动,但是吸收峰的强度均有明显的降低,说明在碱老化过程中,蚕丝蛋白质内部的肽链遭到破坏[24]。在肽链发生断裂时,氨基酸序列重新排列,伴随着大量的氢键和盐式键的断裂与重组,故红外谱图中形成各类键的吸收峰强度减弱。
图2 碱老化处理4 h的丝织品和未处理对照
丝织品样品的FTIR图谱
Fig.2 FTIR spectrum of silk fibers from silk fabrics after 4 h
alkaline aging and those from control samples
2.3 X-射线衍射分析
图3是碱老化处理4 h的丝织品和未处理对照组丝织品样品的XRD图谱。从图3可以看到,对照组和碱老化处理后的丝织品的晶体结构都是以silk Ⅱ型为主,其衍射峰通常出现在9.1°、18.9°、20.7°和24.3°等处附近[25]。从图3还可以发现,对照组丝织品在9.7°、20.7°和24.7°处有较为明显的衍射峰,而碱老化处理后的样品的衍射峰位置并未发生明显的变化,但是这三个位置的衍射峰强度变弱,衍射峰宽度变大,说明碱老化处理后的丝纤维结晶度发生了变化。这可能与丝织品经过碱老化后,其中的氨基酸序列断裂与重组引起的结构变化有关。
图3 碱老化处理4 h的丝织品和未处理对照
丝织品样品的XRD图谱
Fig.3 XRD spectrum of silk fibers from silk fabrics after 4 h
alkaline aging and those from control samples
2.4 轻稳定同位素比值分析
从碱老化处理后丝织品样品中的轻稳定同位素比值测试结果(表1)可以看到,本实验研究丝织品的D变化范围为-85.30‰~-59.32‰,其中未老化的丝织品的D值ZD,为-85.30‰。所有经过碱老化后的丝织品中D值都比未老化丝织品中的D值要高,其中最大相差26‰左右。说明丝织品碱老化过程中伴随的涉及结构变化(如红外和XRD分析所反映)的老化反应会明显影响丝纤维的重轻氢元素组成,其中重氢元素整体趋向富集。碱老化处理对丝织品样品中的轻同位素比值影响大致是一个先增加后减小的过程,这符合动力学同位素分馏与反应程度的关系,即在反应的最初时刻,反应物优先分离轻同位素组分,反应产物优先富集轻同位素;随着反应的继续,反应物中一些相对较重的同位素组分也逐步从反应物中进入到反应产物中[26]。未老化丝织品中的¹⁸O值为22.40‰,用碱老化方式老化一段时间后,到结束时丝织品中的¹⁸O值变化能达到0.29‰左右,碱老化处理对丝织品中氧同位素整体的变化规律影响并不明确。碱老化处理对丝织品中氮同位素的影响大致是一个同位素比值先增大后减小的过程,最终趋于重氮同位素富集的状态,这同样符合动力学同位素分馏与反应程度的关系,但是碱老化后丝织品的氮同位素比值的变化程度较小,能达到0.10‰左右;而碳同位素比值整体呈增大的趋势,整个碱老化过程中,¹³C变化程度能到达1.38‰左右。
表1 常规碱老化丝织品样品中的轻稳定同位素比值测试结果
Tab.1 Light stable isotope ratio results in silk fabrics with normal alkaline treatment
分析认为,在碱老化过程中,丝纤维的非晶区先受到破坏,快速分解产生大量氨基酸基团。在分解肽链产生氨基酸的过程中,伴随着氨基酸中氢键的断裂与形成及盐式键的生成与断裂。氢、氧和氮元素是形成氢键的重要元素,由于氢元素的相对分子质量较小,使得丝织品的氢稳定同位素比值在碱老化过程中变化较大,而且因为同位素反应动力学原理,由轻同位素组成的键在这些老化反应过程中容易断键解离,使得老化样品中余下较多氢的重同位素,D值增大,呈富集状态。而氧元素的相对分子质量相对较大,变化一般不会如氢元素那样明显,又因为在碱处理过程中实际除了氢键的断裂,还会有氢键的形成及盐式键的形成与断裂,这个过程对于氧的重、轻同位素的选择反应会比较复杂,因此氧稳定同位素比值的变化没有明显的规律,呈小的波动状。氮稳定同位素比值则出现了先变大再减小的小波动,但整体也呈重氮元素富集状态,符合反应动力学分馏规律。而碳元素是组成丝纤维的主要元素,随着老化反应的进行,氨基酸基团中含碳键的轻碳同位素优先断裂,使得最终老化产物中碳的重同位素较多,¹³C变大,整体呈富集状态。
这一结果与之前韩丽华等[21]所做的光、湿老化后丝织品的轻稳定同位素比值的变化情况基本一致。经过老化后,丝织品中氢和碳元素的重同位素均呈富集状态,整体的变化趋势相同。但是实验所选丝织品空白样的氢、碳同位素比值并不相同,而且经过光、湿老化后,丝织品同位素比值的变化程度相较于碱老化的要小,这可能与实验研究条件有关,光、湿老化处理相较于碱老化处理而言,对丝织品结构的影响程度较小。
结 论
碱老化处理对丝织品样品的形貌结构会产生较大的影响。碱老化处理后的丝织品样品中的丝纤维排列变得松散,表面变得粗糙,并且伴随着断裂现象,结晶度变小,丝纤维中肽链发生断裂,由于着氨基酸中氢键和盐式键的断裂与重组,引起最终老化丝织品中稳定同位素比值发生变化。碱老化后的丝织品中氢、氮稳定同位素比值出现先变大后减小的波动,重氢和重氮元素整体呈富集状态。碱老化后的丝织品中碳的重同位素较多,¹³C变大,重碳元素呈富集状态。丝织品在不同老化方式下,其中的同位素比值的整体变化趋势相似,但是对同位素的影响程度不相同。
丝织品文物在埋藏过程中会受到酸碱性条件的影响,经过较长时间,在反应程度较为缓和的条件下逐步老化。而碱老化的反应过程十分剧烈,可以在很短的时间内达到明显的老化效果。研究发现,在碱老化这样剧烈的条件下,碳、氮、氧三种同位素比值的变化程度都在1.5‰以内,说明老化对丝织品文物中同位素变化的影响有限,经过一定的数据校正,利用同位素技术进行丝织品文物溯源是可行的,并提供了一个可供参考的大致数据校正范围。
TBS1-8DI基础型实验室纯水机应用在 浙江理工大学材料科学与工程学院
纺织纤维材料与加工技术国家地方联合工程实验室